Search results for "algebraic systems"

showing 3 items of 3 documents

The Bernstein Basis and its applications in solving geometric constraint systems

2012

International audience; This article reviews the properties of Tensorial Bernstein Basis (TBB) and its usage, with interval analysis, for solving systems of nonlinear, univariate or multivariate equations resulting from geometric constraints. TBB are routinely used in computerized geometry for geometric modelling in CAD-CAM, or in computer graphics. They provide sharp enclosures of polynomials and their derivatives. They are used to reduce domains while preserving roots of polynomial systems, to prove that domains do not contain roots, and to make existence and uniqueness tests. They are compatible with standard preconditioning methods and fit linear program- ming techniques. However, curre…

Algebraic systems[ INFO.INFO-NA ] Computer Science [cs]/Numerical Analysis [cs.NA]Univariate and multivariate polynomials[INFO.INFO-NA] Computer Science [cs]/Numerical Analysis [cs.NA]ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]Geometric constraint solving. Bernstein polytopeTensorial Bernstein basis
researchProduct

OPTIMIZATIONS FOR TENSORIAL BERNSTEIN–BASED SOLVERS BY USING POLYHEDRAL BOUNDS

2010

The tensorial Bernstein basis for multivariate polynomials in n variables has a number 3n of functions for degree 2. Consequently, computing the representation of a multivariate polynomial in the tensorial Bernstein basis is an exponential time algorithm, which makes tensorial Bernstein-based solvers impractical for systems with more than n = 6 or 7 variables. This article describes a polytope (Bernstein polytope) with a number of faces, which allows to bound a sparse, multivariate polynomial expressed in the canonical basis by solving several linear programming problems. We compare the performance of a subdivision solver using domain reductions by linear programming with a solver using a c…

[ INFO.INFO-NA ] Computer Science [cs]/Numerical Analysis [cs.NA]Linear programmingPolytopeBernstein polynomials01 natural sciencesSimplex algorithmApplied mathematicssimplex algorithm0101 mathematicsMathematicsDiscrete mathematicsBasis (linear algebra)Applied Mathematics010102 general mathematicssubdivision solverlinear programmingalgebraic systemsQuadratic function[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]Solver1991 Mathematics Subject Classification: 14Q15 14Q20 65G40Bernstein polynomialComputer Science Applications010101 applied mathematicsModeling and SimulationStandard basisGeometry and TopologyComputer Vision and Pattern RecognitionSoftwareInternational Journal of Shape Modeling
researchProduct

Two positive solutions for a nonlinear parameter-depending algebraic system

2021

The existence of two positive solutions for a nonlinear parameter-depending algebraic system is investigated. The main tools are a finite dimensional version of a two critical point theorem and a recent weak-strong discrete maximum principle.

positive solutionspositive solutionSettore MAT/05 - Analisi Matematicavariational methodsNonlinear algebraic systemNonlinear algebraic systems; positive solutions; variational methodsNonlinear algebraic systems
researchProduct